

Copyright Echoview Software Pty Ltd 2000-2025. All rights reserved.
Echoview is a registered trademark of Echoview Software Pty Ltd.
Other brands and trademarks are the property of their respective owners. 01/25

Echoview Tutorial:

Introduction to the Code operator

Echoview Tutorial: Introduction to the Code operator Page 2 of 74

Contents

Overview ...6

Prerequisites ...6

Echoview modules ...6

Contacting Echoview ...6

Set up ..6

Troubleshooting ...6

Part 1: Preamble ...7

Introduction to the Code operator ...7

Python installation information ...7

Downloading and extracting the tutorial package ...7

Code operator resources ..7

About the numbering system ...7

Prerequisite knowledge for advanced usage ..7

Python programming syntax ..8

Part II: The Code operator ..9

1 Getting started ...9

1.1 Launching Echoview and loading the data ..9

1.2 Creating a Code operator virtual variable in Echoview ... 10

2 Configuring settings for the Code operator ... 12

2.1 The Python source file setting ... 12

2.1.1 Generating a default Echoview Python source file.. 12

2.1.2 About the commands in the default Echoview Python source file ... 13

2.2 The Window size (pings) setting ... 14

3 Executing the default Echoview Python source file .. 15

3.1 Afterword: The Code operator as an Echoview variable ... 16

4 Practice—Adding 1 dB .. 17

4.1 Reading, manipulating and returning pings with the eval method .. 17

4.1.1 Explaining the Python commands .. 18

4.2 Returning the NumPy array of ping samples to Echoview .. 19

4.2.1 Explaining the Python commands .. 20

4.3 Indentation and encoding errors ... 20

Echoview Tutorial: Introduction to the Code operator Page 3 of 74

4.3.1 Mixing tabs and spaces .. 20

4.3.2 Invalid encoding ... 20

5 Practice—Loading additional operands into the Code operator ... 21

5.1 Loading the data .. 21

5.2 Adding operands in Echoview ... 22

5.3 Adding operands in the Echoview Python source file ... 24

5.4 Returning the ping samples from another operand ... 24

6 Practice—Changing the data type of the Code operator .. 26

6.1 Changing the data type with the result_type method .. 26

6.1.1 Explaining the Python commands .. 27

7 Practice—Working with ping samples from different operands .. 28

7.1 Computing the number of targets per unit volume .. 28

7.1.1 Explaining the Python commands .. 29

7.2 Choosing a data type with the result_type method ... 30

7.2.1 Explaining the Python commands .. 30

8 Review .. 32

9 Introducing the window of measurements .. 33

9.1 Understanding the window of measurements in concept ... 33

9.2 Utilizing the window of measurements .. 33

9.3 Summarizing notes on the window of measurements .. 34

10 The Measurement class .. 35

11 Practice—Outputting messages to a log .. 36

11.1 Logging the number of pings in the window of measurements ... 36

11.1.1 Explaining the Python commands .. 38

11.2 Interpreting the log .. 39

11.3 Afterword ... 40

12 Review .. 41

13 Comments on ping samples in NumPy arrays ... 42

13.1 Outputting other ping attributes ... 42

13.2 Ping sample data from all pings in the window of measurement .. 42

Echoview Tutorial: Introduction to the Code operator Page 4 of 74

13.3 The shape of an array ... 43

Part III: Exercises ... 44

14 Prelude to the exercises ... 44

14.1 Obtaining the exercises ... 44

14.2 Completing the exercises .. 44

14.3 Using the NumPy and SciPy packages ... 44

14.4 Programming principles ... 44

15 Exercise 1a—Mean operator .. 46

15.1 Algorithm ... 46

15.2 Setting up the Code operator .. 46

15.3 Setting up the Echoview Python source file .. 46

15.3.1 Procedure ... 47

15.4 Executing the Echoview Python source file .. 47

15.5 Comparing the result with the XxY statistic operator .. 48

15.5.1 Creating an XxY statistic operator to replicate the Code operator ... 48

15.5.2 Creating a Minus operator to test the difference .. 49

15.5.3 Visualizing the difference between the XxY statistic and Code operator................................... 50

15.6 Afterword ... 51

16 Exercise 1b—Mean operator .. 52

16.1 Algorithm ... 52

16.2 Setting up the Code operator .. 52

16.3 Setting up the XxY statistic operator ... 53

16.4 Setting up the Echoview Python source file .. 53

16.5 Executing the Echoview Python source file .. 54

17 Exercise 2—Gaussian blur operator ... 56

17.1 Algorithm ... 56

17.2 Setting up the Code operator .. 56

17.3 Setting up the Echoview Python source file .. 57

17.4 Executing the Echoview Python source file .. 59

18 Exercise 3—Multibeam circle filter ... 60

18.1 Algorithm ... 60

18.2 Setting up the Code operator .. 61

18.3 Setting up the Echoview Python source file .. 61

18.4 Executing the Echoview Python source file .. 64

Echoview Tutorial: Introduction to the Code operator Page 5 of 74

Part IV: Appendix ... 66

A Complete Echoview Python source files .. 66

A.1 About the commands in the default Echoview Python source file (Section 2.1.2) 66

A.2 Practice—Loading additional operands into the Code operator (Section 5) 66

A.3 Practice—Working with ping samples from different operands (Section 7) .. 67

A.4 Practice—Outputting messages to a log (Section 11) .. 67

B The Code operator and object-oriented programming ... 68

B.1 What is an “object”? .. 68

B.2 Attributes and methods ... 68

B.2.1 Programming a method for the Code operator ... 68

B.2.2 Programming an attribute for the Code operator ... 69

B.2.3 Calling an attribute or method .. 69

B.3 About self ... 69

C The echoview Python package ... 71

C.1 OperatorBase .. 71

C.1.1 eval(self, inputs: List[ev.OperandInput]) .. 71

C.1.2 result_type(self, input_types: List[ev.MeasurementType]) 71

C.2 OperandInput ... 72

C.3 Measurement ... 72

C.4 MeasurementType ... 72

D Examples using numpy.where .. 73

Echoview Tutorial: Introduction to the Code operator Page 6 of 74

Overview

This tutorial is optimized for Echoview 15 and provides an introduction to the Code operator, a virtual variable in
Echoview.

This tutorial is not intended as a comprehensive user manual.

The latest version of the Echoview help file contains further information on Echoview tools and topics. The file
can be viewed online and is installed with Echoview. Press F1 when using Echoview to open the help file and
read context-sensitive information.

Throughout this tutorial further reading is referred to the Echoview help file or other Echoview training materials:
https://echoview.com/support/tutorials/

Prerequisites

This tutorial assumes you have Echoview installed, and the following skills and knowledge:

• Familiarity with the basic operation of Echoview. We strongly recommend that you complete the
"Getting Started" tutorial before beginning this tutorial. Familiarity with a supported Microsoft
WindowsTM operating system. For more information refer to the Echoview Help file page:
Computer requirements.A basic understanding of echosounding techniques and hydroacoustic
surveying.

Echoview modules

This tutorial requires a license with the Essentials and Advanced Operators modules.

If you do not yet have access to Echoview licenses with these modules, please contact info@echoview.com to
request an evaluation license.

Contacting Echoview

For assistance with this tutorial please contact support@echoview.com.

Set up

We recommend extracting or copying the tutorial files to C:\Echoview Software\Tutorials\. If the files

are not in this folder, use Windows Explorer to search for them. If they are not loaded on your machine,
download and reinstall the tutorial from www.echoview.com or from the Echoview USB drive.

Troubleshooting

If you receive a message saying that the version of Echoview you are running cannot read the file you have
opened, you may be running an old version of Echoview. You can download the latest version of Echoview
from www.echoview.com.

https://echoview.com/support/tutorials/
https://support.echoview.com/WebHelp/_Introduction/Computer_requirements.htm
https://support.echoview.com/WebHelp/_Introduction/Computer_requirements.htm
mailto:info@echoview.com
mailto:support@echoview.com
http://www.echoview.com/
http://www.echoview.com/

Echoview Tutorial: Introduction to the Code operator Page 7 of 74

Part 1: Preamble

Introduction to the Code operator

Echoview variables1 represent time–series measurements from a data file. Echoview utilizes these
variables to store, manipulate and display that data—which are typically ping samples. This
implementation ensures that raw data from the data file remains unmodified.

The Code operator is an Echoview virtual variable (refer to the About virtual variables online Help
page) that is a Python application programming interface (API). It is specifically devised to transform
echograms according to a filter or algorithm of your design. The operator accepts other Echoview
variables as input, performs computations on the associated ping samples in Python, and returns the
output to Echoview. The ping samples are the S𝑣, TS, power, or other values of the data.

Python installation information

Echoview is installed with Python3, NumPy and SciPy for the Code operator. In Echoview, refer to the
Python section of the General page of the Echoview Configuration dialog box for the version
information.

Downloading and extracting the tutorial package

If you haven’t already, download the tutorial package from

https://update.echoview.com/Tutorials/IntroToCodeOperator.exe

and double-click on the file to extract its contents. You may need to right-click and choose Run as
administrator from the drop-down menu for the extractor to write to the default location at

C:\Echoview Software\Tutorials\IntroToCodeOperator

Code operator resources

In addition to this tutorial, there are other resources available for learning about the Code operator

i. The Using the Code operator online Help page

ii. The Introduction to the Code operator: A Python interface for Echoview video

You may also direct any questions you have to support@echoview.com.

About the numbering system

This tutorial employs a continuous numbering system across sections and exercises. This approach ensures a
logical progression through the material, facilitates cross-referencing of steps, and supports users in
navigating between interconnected concepts efficiently. Whether you are working through the tutorial
sequentially or referring back to earlier sections, the continuous numbering system helps maintain clarity and
consistency.

Prerequisite knowledge for advanced usage

Outside of the basic objective of this tutorial, note that fully exploiting the power of the Code operator requires
some proficiency in

• programming in Python,

• theory behind object-oriented programming (OOP), and

• OOP within the Python framework.

1 Not to be confused with the computer science definition where variable refers to a storage location

symbolized by a name.

https://support.echoview.com/WebHelp/Files%2C_Filesets_And_Variables/Variables/Virtual_Variables/About_virtual_variables.htm
https://support.echoview.com/WebHelp/Windows_And_Dialog_Boxes/Dialog_Boxes/Echoview_configuration_dialog_box.htm
https://update.echoview.com/Tutorials/IntroToCodeOperator.exe
https://support.echoview.com/WebHelp/How_To/Use_The_Code_Operator/Using_the_Code_operator.htm
https://www.youtube.com/watch?v=79Nv-IV19E0
mailto:support@echoview.com

Echoview Tutorial: Introduction to the Code operator Page 8 of 74

It is beyond the scope here to provide instruction on these topics. However, we provide some Python and OOP-
related information for the Code operator in Appendices B and C, that you may find useful for your learning as
you work through the content.

Python programming syntax

In the interests of adhering to our objective, we will neither be reviewing how to program nor providing
instruction on using Python2. Ideally, you will have some programming experience, including basic knowledge of
Python such as

• importing libraries (using different syntaxes)

• knowledge of Python’s built-in functions (https://docs.python.org/3/library/functions.html)

• assigning variables to names

• executing mathematical operations

• indenting blocks of code

• dealing with Boolean types

• constructing conditional statements

• defining functions

• manipulating lists and NumPy arrays

2 Resources such as https://www.python.org/about/gettingstarted/ serve this purpose.

https://docs.python.org/3/library/functions.html
https://www.python.org/about/gettingstarted/

Echoview Tutorial: Introduction to the Code operator Page 9 of 74

Part II: The Code operator

1 Getting started

While working through this tutorial remember that you can visit the online Echoview Help file to clarify any details
along the way.

https://support.echoview.com/WebHelp/_Introduction/About_Echoview.htm

1.1 Launching Echoview and loading the data

1. To begin, open Echoview, create a new EV file, and with the Fileset window add3

C:\Echoview Software\Tutorials\IntroToCodeOperator\Simulated-

data\example.sv.csv

Echoview creates the raw variable

Fileset 1: Sv comma-separated values

Find this raw variable on the Dataflow window and rename it to

Fileset 1: Sv CSV ➔

by right-clicking on it to open the shortcut menu and selecting Rename. (Or left-click to select it and press
F2).

2. Take a glance at the data.

a. In the Dataflow window double-click on to open the echogram for this datafile.

b. On the Color legend set Display minimum to −2 and Display range to 5 (Figure 1).

c. Adjust the zoom to display all the pings and ping samples in the echogram by making a vertical
selection over the entire echogram and zooming in.

3 Default installation path.

Figure 1. Color legend display settings

https://support.echoview.com/WebHelp/_Introduction/About_Echoview.htm

Echoview Tutorial: Introduction to the Code operator Page 10 of 74

You can see that this example data consists of 10 pings with 5 samples per ping (Figure 2).

3. Press Ctrl+S and Echoview will open a Windows dialog box to save the new EV file.

a. With the Windows dialog box first create a new folder called

code-operator-getting-started

click on it and enter the file name

getting-started

b. When you click Save Echoview creates getting-started.EV. Remember to keep saving

your progress.

1.2 Creating a Code operator virtual variable in Echoview

4. In the Dataflow window click on to preset it as Operand 1 for the next step.

5. Using the Dataflow toolbox or the New virtual variable dialog box, create a Code operator virtual

variable.

Figure 2. Echogram of the variable with the Color legend Display

minimum set to −2 and Display range set to 5. The echogram comprises pings 0 to 9
(left to right) with five ping samples per ping, alternating between 1 and 2 dB.

Echoview Tutorial: Introduction to the Code operator Page 11 of 74

a. You will receive a security warning (Figure 3) advising you against executing untrusted Python

code.

b. Click Yes to authorize Echoview to execute Python code for the Code operator and close the

Security warning dialog box.

c. You will now see a Code operator on the Dataflow window. Rename the new Code operator

variable to

 Code: Getting started ➔

d. Your Dataflow window should resemble Figure 4.

6. Save your changes to getting-started.EV.

Figure 4. Dataflow window showing Code
operator.

Figure 3. Security warning

Echoview Tutorial: Introduction to the Code operator Page 12 of 74

2 Configuring settings for the Code operator

We will now introduce the settings on the Code page of the Variable Properties dialog box for the Code operator.

1. Right-click on and select Variable Properties from the drop-down menu (or left-click and

press F8) to open the Variable Properties dialog box4.

2. Click on the Code page (Figure 5) where you will see the settings

a. Python source file

b. Window size (pings)

2.1 The Python source file setting

Use this to generate a new default Echoview Python source file (which we will now do) or specify the path to
an existing one.

2.1.1 Generating a default Echoview Python source file

3. On the Code page (Figure 5) click on . Echoview will open a Windows dialog box for you to save your

new Echoview Python source file.

a. In the Windows dialog box, navigate into

4 The Variable Properties dialog box contains many settings to configure Echoview variables.

Figure 5. The Code page of the Variable Properties dialog box.

https://support.echoview.com/WebHelp/Windows_And_Dialog_Boxes/Dialog_Boxes/Variable_Properties_Dialog_Box/Variable_properties_dialog_box.htm

Echoview Tutorial: Introduction to the Code operator Page 13 of 74

code-operator-getting-started (from step 3 in Section 1.1) and

enter the file name

getting-started

b. When you click Save Echoview will generate a new Echoview Python source file, append the

required .py extension and open getting-started.py in Windows Notepad (by default)5.

c. You will now see the path to getting-started.py in the Python source file text box.

In the next section, we will outline what the code in getting-started.py does.

(Note for your future reference that you can use the button (Figure 5) to open the Echoview Python
source file specified in the text box.)

2.1.2 About the commands in the default Echoview Python source file

Your new default Echoview Python source file contains commands to interface between Python and Echoview,
comments to describe the code6, and a simple program for the Code operator.

We will execute getting-started.py shortly in Section 3. Meanwhile, here is an outline of what it does. Don’t

worry if you do not understand all the Python commands, we will clarify the code as we progress through the
tutorial.

(If you are completely new to OOP, you may wish to first read Appendix B, which introduces the technical terms
coming up in this section, and that we will use during this tutorial.)

i. The code utilizes these import statements

from typing import List import echoview as ev

import numpy as np

to access the typing, echoview and numpy Python packages. The echoview Python package

(Appendix C) contains the OperatorBase, OperandInput, Measurement and MeasurementType classes

for the Code operator.

ii. Next, it defines the Operator class. The syntax

class Operator(ev.OperatorBase):

shows we derive Operator from the OperatorBase class of the echoview Python package.

You can think of Operator as the Python equivalent of the Code operator in Echoview.

iii. Now look at the eval method, which is where you program the function of the Code operator in

Echoview.

def eval(self, inputs: List[ev.OperandInput]):

first_input = inputs[0]

return first_input.measurement.data

5 To change this (and we recommend you do), specify the path to a text editor of your choice on the

Echoview Configuration dialog box. Use the Python source file editor setting on the General page. There are

plenty of freely available text editors that you can search for and download from the internet.
6 You can refer to Appendix A.1 for a condensed version of the default Echoview Python source file with the

comments removed.

https://support.echoview.com/WebHelp/Windows_And_Dialog_Boxes/Dialog_Boxes/Echoview_configuration_dialog_box.htm
https://support.echoview.com/WebHelp/Windows_And_Dialog_Boxes/Dialog_Boxes/Echoview_configuration_dialog_box.htm

Echoview Tutorial: Introduction to the Code operator Page 14 of 74

Here, the Python command copies Operand 1 (inputs[0]) and assigns it to the variable

first_input.

Finally, the return statement communicates the ping sample data for first_input via

eval to Echoview.

Note that the commands in points i. and ii. set up the interface between Python and Echoview. They do not
vary (in essence) between different Echoview Python source files.

In contrast, the commands that constitute the eval method in point iii. characterize the function of your Code

operator—i.e., it is in eval that you write your Code operator program.

Tabs vs spaces The default Echoview Python source file uses tabs for Python code indentation. You may
choose to maintain using tabs or replace them with spaces instead. However, you cannot use a mix of both
when indenting.

While attempting the practices and exercises in this tutorial be careful to maintain consistency in employing one or
the other.

File encoding The default Echoview Python source file uses the UTF-8 character encoding system (refer to the
Glossary entry on the online Help page). If you copy the text from the default Echoview Python source file to
another file, you must save that file in the UTF-8 format as well.

Comments The Python interpreter ignores the # character and any text that follows it.

You can utilize this feature to add notes to your Echoview Python source or to comment out your code for
testing.

This is a comment that is ignored by the Python interpreter.

You can also encapsulate comments within triple quotes7

"""

Any text within the triple quotes are comments.

"""

2.2 The Window size (pings) setting

The Code operator iterates through an operand’s echogram ping-by-ping (not necessarily in sequence8). If
there are multiple operands, each iteration simultaneously reads the pings with identical ping indexes from all
the input echograms.

The window is an aperture that parses the current ping (from each operand) and its adjacent pings into the
operator.

4. Set aside or close getting-started.py and return to the Code page (Figure 5) where you can also see

an input for Window size (pings).

For now, leave Window size (pings) as 1 to restrict the window to the current ping only. We will explore it in

detail in Section 9.

7 This is technically an unassigned string in the code.

8 Mainly because Echoview processes pings on demand. For example, if the echogram view is only looking at
the last few pings, then only those are processed.

https://support.echoview.com/WebHelp/Reference/Glossary.htm#Character_encoding

Echoview Tutorial: Introduction to the Code operator Page 15 of 74

3 Executing the default Echoview Python source file

We will check one more setting on the Variable Properties dialog box before executing

getting-started.py via .

1. Click on the Operands page and verify that the Operands section shows

Fileset 1: Sv CSV Otherwise, click to open the drop-down menu for Operand 1 (Figure 6) and

select this variable.

Fileset 1: Sv CSV now corresponds to inputs[0] in getting-started.py. (Refer to

point iii. in Section 2.1.2.)

Figure 6. The Operands page of the Variable Properties dialog box.

2. Click OK to save your changes, close the Variable Properties dialog box, and save your changes to

getting-started.EV.

3. In the Dataflow window double-click on to execute the commands in

getting-started.py and open an echogram of the result.

a. On the Color legend for the echogram verify or set Display minimum to −2 and Display range to 5

(Figure 1). Adjust the zoom to display all the pings and ping samples in the echogram. You see
what is shown in Figure 7.

Echoview Tutorial: Introduction to the Code operator Page 16 of 74

Figure 7. Echogram showing that the default Echoview Python source file returns a copy of the ping samples from

Operand 1 to the Code operator. The echogram comprises pings 0 to 9 (left to right) with five ping samples per ping,
alternating between 1 and 2 dB.

b. Compare it to the echogram for in Figure 2. They are identical.

You can see that the default Echoview Python source file returns a copy of the ping samples from Operand 1.

3.1 Afterword: The Code operator as an Echoview variable

At this point, take stock of the similarity between the Code operator and Echoview’s other virtual variables. In
either case, you create an operator and specify one or more operands. The operator performs a computation
on the pings from the operands, and you visualize the output in the resulting echogram.

Whereas other virtual variables work to a specification, you have the freedom to program the function of the
Code operator.

Also, note that you can only execute Echoview Python source files via the Code operator (as you did in step 3
above). However, you may use your preferred text editor or integrated development environment (IDE) to
write the Python code.

Echoview Tutorial: Introduction to the Code operator Page 17 of 74

4 Practice—Adding 1 dB

We will now program to add 1 dB to each sample of all the pings of . If you do not

understand the Python commands in the upcoming steps, we will examine them in Section 4.1.1.

4.1 Reading, manipulating and returning pings with the eval method

1. Return to or open getting-started.py (Section 2.1.1).

2. Look for the eval code block.

def eval(self, inputs: List[ev.OperandInput]):

. . .

. . .

return first_input.measurement.data

This method reads in pings from all the input operands, executes your Python commands on the pings

and communicates the resultant ping samples to Echoview.

(Refer to Appendix C.1.1 for more details on eval including the syntax for how it is defined.)

3. Find the return statement

return first_input.measurement.data

4. Add 1 dB

return first_input.measurement.data + 1

and save the changes to getting-started.py.

While you have the echogram for open, any changes that you save in the Echoview Python source will

trigger the Code operator to reevaluate in Echoview. Look at its echogram now. You can see you have added 1
dB to each sample for all the pings (Figure 8).

Echoview Tutorial: Introduction to the Code operator Page 18 of 74

Figure 8. Echogram shows 1 dB added to each ping sample from the input echogram (shown in Figure 2).

4.1.1 Explaining the Python commands

In Section 2.2 we specified Window size (pings) as 1. Therefore, the Code operator reads in one ping at a time

from Operand 1—which is .

When reading the first ping, 0 for example, we have

where the square brackets represent the window, and the number in the middle is the ping index.

Refer to the return statement

return first_input.measurement.data + 1

Recall from point iii. in Section 2.1.2 that first_input corresponds to Operand 1 (we will explore this further

in Section 5). Then

first_input.measurement

refers to the current ping9 in the window, i.e., 0

9 Technically, each item in the inputs list is an OperandInput object (Section 10).

0] [

Echoview Tutorial: Introduction to the Code operator Page 19 of 74

A ping is comprised of many attributes10 such as the ping index, datetime, GPS distance and more11.

However, the return statement for eval must communicate the ping samples to Echoview.

To access the ping samples, use the data attribute

first_input.measurement.data

This is a NumPy array12 with each element in the array corresponding to an individual ping sample. So, for

 0 the sample values are

first_input.measurement.data = [1, 2, 1, 2, 1]

To visualize first_input.measurement.data, you can compare the array with the value of each sample for

 0 (leftmost ping) in Figure 7.

When we add 1 db with

first_input.measurement.data + 1

we are utilizing a shortcut feature (bypassing a for or while loop) available to NumPy arrays to add 1 to each

ping sample to give

first_input.measurement.data + 1 = [2, 3, 2, 3, 2]

The return keyword communicates the above result to Echoview. Again, you can visualize

first_input.measurement.data + 1 by reading the value of each sample for 0 (leftmost ping) from the

Color legend in Figure 8.

The Code operator repeats the computation for all the pings in .

4.2 Returning the NumPy array of ping samples to Echoview

The array in the return statement needs to be a NumPy array of the same shape13 as the input ping.

We will now force an error in Echoview by changing the shape of first_input.measurement.data. You may

simply follow the steps for now, we will explain the Python commands in Section 4.2.1.

5. In getting-started.py replace

return first_input.measurement.data + 1

with

return first_input.measurement.data[1:4]

and save the change.

In the Echoview Messages dialog box, you receive the error:

Code: Getting started: returned array must have the shape (5) but was (3).

10 The term attributes can have a technical meaning in programming. Refer to Appendix B.2 for a

description.

11 You can find the complete list on the Using the Code operator online Help page.

12 A popular data structure in Python.

13 The length of the array in each dimension.

https://support.echoview.com/WebHelp/Windows_And_Dialog_Boxes/Dialog_Boxes/message_dialog_box.htm
https://support.echoview.com/WebHelp/How_To/Use_The_Code_Operator/Echoview_Python_Package/Measurement_class.htm

Echoview Tutorial: Introduction to the Code operator Page 20 of 74

and the echogram appears uniformly black.

Undo the change to getting-started.py and save to revert to the default Echoview Python source file. The

echogram for will reappear (Figure 7).

Note that you can double-click on error messages in the dialog box to expand them to show more details.

4.2.1 Explaining the Python commands

Python uses zero-indexing for all its array-like objects. Hence,

first_input.measurement.data[1:4]

uses NumPy’s slicing feature to select the second up to the fourth14 ping sample, so for ping

 0 (leftmost ping) in Figure 7 for example, we have

first_input.measurement.data[1:4]= [2, 1, 2]

In trying to communicate first_input.measurement.data[1:4], to Echoview, we caused an error. The

Messages dialog box reports that the input ping had five samples, however, the output ping only had three
samples.

You also see that Echoview produces a uniformly black echogram if it encounters any errors in the Echoview
Python source file.

4.3 Indentation and encoding errors

At the end of Section 2.1.2, we explained that the default Echoview Python source file uses tabs for Python
code indentation and the UTF-8 character encoding system.

You will get an error if you mix tabs and spaces or save the default file using an encoding system that does not
support the special character within.

We recommend you gain some experience in recognizing both these errors.

4.3.1 Mixing tabs and spaces

Firstly, try replacing the tabs for one of the commands in getting-started.py with an equivalent number of

spaces to maintain the indentation. Notice the error in the messages dialog box when you save the change.

Double-click on the error in the dialog box to open it. The exact message may vary; however, it will hint at a
problem with the indentation and indicate the line and column number with the problem. Undo the change to
revert the error.

4.3.2 Invalid encoding

Next, use your text editor to change the character encoding system to one that does not support the ® special
character in getting-started.py. Note that in this instance, the error message may not indicate the actual

line and column number containing the problem, but where the Python interpreter failed. Return the file
character encoding system to UTF-8 to revert the error.

14 Note that slicing [start:stop] in Python selects the ping sample corresponding to the start

index up to but not including the ping sample at the stop index.

Echoview Tutorial: Introduction to the Code operator Page 21 of 74

5 Practice—Loading additional operands into the Code operator

You are not constrained by the number of operand inputs into the Code operator. However, all the inputs must
have the same number of pings and ping samples. (Refer to the Using multiple operands online Help page.)

We will now load a second operand into . Then using getting-started.py, we will return

the ping samples from Operand 2.

5.1 Loading the data

1. In Echoview go to the Fileset window. Create Fileset 2 and add15

C:\Echoview Software\Tutorials\IntroToCodeOperator\Simulated-

data\example.ts.csv

Echoview creates the raw variable

Fileset 2: TS comma-separated values

Find this raw variable on the Dataflow window and rename it to

Fileset 2: TS CSV ⇐⇒

a. Double-click on to open its echogram.

b. On the Color legend set Display minimum to −2 and Display range to 5 (Figure 1).

c. Adjust the zoom until you display all the pings and ping samples in the echogram.

You can see in the echogram that this example data consists of 10 pings, with 5 samples per ping

(Figure 9).

15 Default installation path.

https://support.echoview.com/WebHelp/Files%2C_Filesets_And_Variables/Variables/Virtual_Variables/Matching_Pings.htm
https://support.echoview.com/WebHelp/Files%2C_Filesets_And_Variables/Variables/Virtual_Variables/Matching_Pings.htm

Echoview Tutorial: Introduction to the Code operator Page 22 of 74

Figure 9. Echogram of with the Color legend Display minimum set to −2 and Display range set to 5. The

echogram is comprised of pings 0 to 9 (left to right) with five ping samples per ping, alternating between −1 and −2 dB.

2. Save your changes to getting-started.EV.

5.2 Adding operands in Echoview

3. Now open the Variable Properties dialog box for and navigate to the Operands page.

4. In the Operands section click on the button. You will see a drop-down menu for

Operand 2 appear (Figure 10).

5. From the drop-down menu for Operand 2 choose

Fileset 2: TS CS

Echoview Tutorial: Introduction to the Code operator Page 23 of 74

Figure 10. Adding an operand to the Code operator.

6. Check on the Code page (Figure 5) that the Python source file setting is still showing the path to

getting-started.py. (If not add it or create it by referring to Section 2.1.1.)

7. Click OK to save your edits and close the Variable Properties dialog box. Save your changes to

getting-started.EV.

Your Dataflow window should now resemble Figure 11.

Echoview Tutorial: Introduction to the Code operator Page 24 of 74

Figure 11. The Dataflow window showing with two input operands.

5.3 Adding operands in the Echoview Python source file

Open getting-started.py in a text editor and look for

def eval(self, inputs: List[ev.OperandInput]):

The inputs parameter in the eval method is a Python list. Each item in the inputs list

corresponds to an operand on the Operands page (Figure 10).

So, after step 5 from Section 5.2, you can conceptualize the inputs list as

inputs =

[︂

 ,

]︂

Given that Python uses zero-indexing, inputs[0] is and inputs[1] is . If you add more

operands, they are appended to the inputs list, such that inputs[𝑁 − 1] corresponds to Operand 𝑁.

5.4 Returning the ping samples from another operand

8. In getting-started.py look for

first_input = inputs[0]

and immediately below it insert

second_input = inputs[1]

Echoview Tutorial: Introduction to the Code operator Page 25 of 74

Ensure you maintain the indentation level, and that you use tabs or spaces—in a consistent way—to

indent (Section 2.1.2). The code snippet should now look like

. . .

. . .

Access the input ping of operand 0 first_input = inputs[0]

second_input = inputs[1]

Calibration settings can be obtained from a ping using:

. . .

. . .

You can refer to Appendix A.2 for the completed Python code showing the change.

We can now access the input pings from with second_input.

9. To communicate the ping samples for second_input to Echoview, change the return

statement for eval from

return first_input.measurement.data

to

return second_input.measurement.data

and save getting-started.py.

10. In Echoview open the echogram for and compare it to the echogram for

(Figure 9). They are identical.

11. Save your changes to getting-started.EV.

Echoview Tutorial: Introduction to the Code operator Page 26 of 74

6 Practice—Changing the data type of the Code operator

At the end of the previous section, we return TS ping sample values to Echoview. However, if you hover your

cursor over , the Details dialog box reports that its data type is Sv.

The Code operator supports variables of different data types, but it cannot automatically distinguish between
the data types from multiple input operands. So, it automatically defaults to the data type of Operand 1.

There are two ways we can rectify this:

i. Reorder the operands on the Code page (Figure 5) of the Variable Properties dialog box so that

 is Operand 1.

ii. Use getting-started.py to change the data type with the result_type method, which we will

now do. Afterwards, in Section 6.1.1, we will explain the Python commands in detail.

6.1 Changing the data type with the result_type method

1. Return to or open getting-started.py (Section 2.1.1) and find

def eval(self, inputs: List[ev.OperandInput]):

and immediately above it insert the following code block

def result_type(self, input_types: List[ev.MeasurementType]): return

input_types[1]

(Refer to Appendix C.1.2 for more details on result_type including the syntax of the Python code.)

Ensure you maintain the indentation level, and that you use tabs or spaces—in a consistent way—to
indent. The code snippet should now look like:

. . .

. . .

def result_type(self, input_types: List[ev.MeasurementType]):

return input_types[1]

def eval(self, inputs: List[ev.OperandInput]):

"""Returns a numpy array representing the output ping’s samples.

. . .

. . .

2. When you save your code changes in getting-started.py, the Code operator converts from Sv to

TS in Echoview if the echogram for the operator is open.

 ➔

You may need to close and reopen the Dataflow window to trigger the update.

3. Save your changes to getting-started.EV.

Important: Note that result_type only changes the data type; it does not perform the computations to convert

the ping samples.

https://support.echoview.com/WebHelp/Windows_And_Dialog_Boxes/Dialog_Boxes/details_dialog_box.htm
https://support.echoview.com/WebHelp/Files%2C_Filesets_And_Variables/Variables/About_data_types.htm#acoustic_variables

Echoview Tutorial: Introduction to the Code operator Page 27 of 74

6.1.1 Explaining the Python commands

The parameter input_types in this method is a Python list corresponding to the data types of all the

operands from the Operands page of the Variable Properties dialog box16 (Figure 10), i.e.,

Given that Python uses zero-indexing, with the command

return input_types[1]

we communicate data type to Echoview.

Analogously to the eval method, if you add more operands, they are appended to the inputs_types list,

such that inputs_types[𝑁 − 1] corresponds to the data type of Operand 𝑁 .

16 Each item of this list is an object of the MeasurementType class – refer to Appendix C.4.

Echoview Tutorial: Introduction to the Code operator Page 28 of 74

7 Practice—Working with ping samples from different operands

We will now perform an example computation with the ping samples of and .For

demonstration purposes, we shall assume conditions allowing us to subtract TS from S𝑣 to estimate the number
of targets per unit volume, 𝜌𝑣. Since S𝑣 and TS are in units of dB, we then convert the result to the linear
domain17. Expressed mathematically

𝜌𝑣 = 10
(

𝑆𝑣−𝑇𝑆
10

)

If you encounter any problems in the following steps, refer to Appendix A.3 for the completed Python code for
this computation. We will also explain the Python commands in detail in Section 7.1.1.

7.1 Computing the number of targets per unit volume

Before proceeding, recall that first_input.measurement.data are the ping samples from and

second_input.measurement.data are the ping samples from (Section 5.4).

1. Return to or open getting-started.py (Section 2.1.1) and look for the line

second_input = inputs[1]

Immediately below this command insert

targets_per_unit_volume_log = first_input.measurement.data -

second_input.measurement.data

2. Since the ping samples are in units of dB, we need to convert the samples to the linear domain. So, on a

new line immediately below the previous addition, insert

targets_per_unit_volume_linear = 10**(targets_per_unit_volume_log/10)

3. Finally, change

return second_input.measurement.data

to

return targets_per_unit_volume_linear

and save the modifications.

17 Recall that subtraction in the logarithmic domain corresponds to division in the linear domain.

Specifically, if 𝑋 = log10(𝑥) and 𝑌 = log10(𝑦), then 𝑋 − 𝑌 = 𝑙𝑜𝑔10 (
𝑥

𝑦
). To convert the result back to the linear

domain, we compute 10(𝑋−𝑌) . In the example, 10 (
𝑆𝑣−𝑇𝑆

10
) is used to convert dB values (scaled by 10 for the

definition of dB) to their equivalent linear values.

Echoview Tutorial: Introduction to the Code operator Page 29 of 74

4. In Echoview open the echogram for (Figure 12) to see the result.

Figure 12. Echogram showing the result from subtracting the ping samples from and , and

converting the result to linear form.

5. Save your changes to getting-started.EV.

7.1.1 Explaining the Python commands

Recall that the ping samples for

first_input.measurement.data and second_input.measurement.data

are in NumPy arrays (e.g., Section 4.1.1), and that the Code operator reads the equivalent ping from both

operands as it iterates through the pings (Section 2.2).

We can then perform element-wise subtraction for the corresponding ping samples with the command

first_input.measurement.data - second_input.measurement.data

So, taking the ping samples for ping 0 (leftmost pings in Figures 2 and 9) as an example,

first_input.measurement.data - second_input.measurement.data

= [1, 2, 1, 2, 1] - [-2, -1, -2, -1, -2]

= [3, 3, 3, 3, 3]

We assign this result to targets_per_unit_volume_log.

Echoview Tutorial: Introduction to the Code operator Page 30 of 74

To convert from logarithmic to linear form, the next command performs the element-wise operation of taking
10 to the power18 of the result obtained by dividing the ping samples by 10. Specifically, the operation
10(targets_per_unit_volume_log/10) is applied to each element of the array.

For example, given the result of the subtraction:

targets_per_unit_volume_log = [3,3,3,3,3]

the computation 10(targets_per_unit_volume_log/10) produces:

10**(targets_per_unit_volume_log/10)

= [10
3

10 , 10
3

10 , 10
3

10, 10
3

10, 10
3

10]

= [1.995 … , 1.995 … , 1.955 … , 1.955 … ,1.955 …]

This result is assigned to targets_per_unit_volume_linear, which return communicates to Echoview.

The Code operator repeats this computation for all the pings in and , resulting in

identical ping sample values for all the pings in Figure 12.

7.2 Choosing a data type with the result_type method

Now return to getting-started.py. We need to fix one more thing.

Echoview will maintain the data type for from Section 6, which is TS. However, this is incorrect for 𝜌𝑣,

which is a linear quantity.

6. To rectify this, modify the return statement from

def result_type(self, input_types: List[ev.MeasurementType]):

return input_types[1]

to

def result_type(self, input_types: List[ev.MeasurementType]):

return ev.MeasurementType.SINGLE_BEAM_LINEAR

7. When you save your code changes in getting-started.py, the Code operator con- verts from TS

to Linear in Echoview if the echogram for the operator is open

 ➔

You may need to close and reopen the Dataflow window to see the change.

7.2.1 Explaining the Python commands

We did not conjure ev.MeasurementType.SINGLE_BEAM_LINEAR out of nowhere.

MeasurementType is a class that belongs to the echoview package (Appendix C), which we imported with

18 The Python syntax for raising 𝑥 to the power of 𝑦 is x**y.

Echoview Tutorial: Introduction to the Code operator Page 31 of 74

import echoview as ev

in getting-started.py (look for it near the top). The syntax

ev.MeasurementType

accesses the MeasurementType class from the echoview package which contains all the different data types

that the Code operator supports.

In specifying

ev.MeasurementType.SINGLE_BEAM_LINEAR

we chose the correct data type for our result.

You can find the complete list of supported data types on the Using the Code operator online Help page.

https://support.echoview.com/WebHelp/How_To/Use_The_Code_Operator/Echoview_Python_Package/Measurement_class.htm

Echoview Tutorial: Introduction to the Code operator Page 32 of 74

8 Review

We have now covered some of the basic tasks for working with the Code operator. Before proceeding, here is
a review of the material so far:

• We created a Code operator variable in Echoview (Section 1.2).

• We introduced the settings on the Code page of the Variable Properties dialog box for the Code
operator (Section 2):

– Python source file

– Window size (pings)

• We generated a default Echoview Python source file, which contains commands to interface between
the Code operator and Echoview (Section 2.1.1).

• We gained some experience in

– executing the Echoview Python source file (Section 3),

– modifying the ping samples of the input echogram (Section 4),

– adding a second operand to the Code operator (Section 5.2),

– working with ping samples from multiple operands (Section 7), and

changing the data type of the Code operator (Sections 6 and 7.2).You can now close getting-

started.EV and getting-started.py. We will not need them for the next sections. Certainly, revisit

the content if you need as you work through the rest of this tutorial.

Echoview Tutorial: Introduction to the Code operator Page 33 of 74

9 Introducing the window of measurements

Recall that the Code operator iterates through an echogram ping-by-ping, and that there is a window that
parses the current ping and any adjacent pings into the operator (Section 2.2).

You use the Window size (pings) setting on the Code page (Figure 5) to specify the extent of the window, and
hence, the number of pings that the Code operator reads adjacent to the current ping.

For technical reasons, we refer to the window as the window of measurements19. However, you can also
interpret it as the window of pings.

9.1 Understanding the window of measurements in concept

The snapshot below illustrates the window of measurements—symbolized by the square brackets—for the
example when Window size (pings) is 5.

This diagram is for a single operand. If you specify multiple operands for the Code operator, each operand has
its own window.

Window size (pings) : 5

The row of boxes represents all the pings from an operand. However, only five pings (in yellow)—based on
our specified window—are currently processed in the Code operator via the window of measurements.

As the Code operator iterates through the echogram, the current ping—illustrated above as

 4 —is called the matched ping.

You can imagine that with each iteration, the window of measurements encompasses a new matched ping and
the corresponding group of adjacent pings into the Code operator.

Since the window of measurements is composed of the matched ping in the middle and an equal number of
pings on either side20, the Window size (pings) setting is always an odd number, e.g.,

Window size (pings) : 1 and matched ping 2

Window size (pings) : 3 and matched ping 6

Note that you can expect the Code operator’s speed to decrease if there are many pings in the window. Hence,
it is generally best to keep Window size (pings) to the minimum you need.

Also, keep for future reference that you obtain the value in Window size (pings) with the attribute

self.window_size

in the Echoview Python source file. We will utilize it in Section 11.1.

9.2 Utilizing the window of measurements

Referring to the default Echoview Python source file (Appendix A.1) as an example, Operand 1 is

inputs[0] (point iii. in Section 2.1.2) and is assigned to first_input, i.e.,

19 In Section 10 we will learn what a measurement is in the context of the Code operator.
20 In Section 11 we will explore the edge cases when the size of the window is less than

Window size (pings).

Echoview Tutorial: Introduction to the Code operator Page 34 of 74

first_input = inputs[0]

Given the above, there are three attributes for first_input.

i. first_input.measurement_window

This is the window of measurements.

It is a Python list, meaning you can iterate over these measurements, select individual ones or

generally interact with the window as you would a list. For example,

first_input.measurement_window[0]

corresponds to the first measurement.

Depending on your choice of Window size (pings)—using the illustrations from Section 9.1—

first_input.measurement_window will be

Window size (pings) : 5

Window size (pings) : 1

Window size (pings) : 3

ii. first_input.measurement_index

This is the index position of the matched ping (Section 9.1) in the window of measurements.

For each of the examples in point i., the first_input.measurement_index attribute evaluates to a

Python int (integer), corresponding to the index position of pings , and in the

window—i.e., 2, 0 and 1.

iii. first_input.measurement

This is the matched ping.

For each of the examples in i., first_input.measurement evaluates to pings ,

 2 and 6 respectively.

As a small exercise, you may wish to refer to the diagrams in Section 9.1 and try to figure out what

• first_input.measurement_window,

• first_input.measurement_index, and

• and first_input.measurement

evaluate to for different matched ping and Window size (pings) combinations.

9.3 Summarizing notes on the window of measurements

If we now analyze the return statement in the default Echoview Python source file (Appendix A.1)

first_input.measurement

is the matched ping, and

Echoview Tutorial: Introduction to the Code operator Page 35 of 74

first_input.measurement.data

is the ping samples of the matched ping.

Look at the echogram in Figure 2. If the matched ping were 6 then

first_input.measurement = 6

and

first_input.measurement.data = [1, 2, 1, 2, 1]

10 The Measurement class

All the pings in the window of measurements such as

first_input.measurement_window[0]

or

first_input.measurement

are objects of the Measurement class (Appendix C.3).

Aside from the sample data

first_input.measurement.data

with the attributes of the Measurement class, you can access other aspects of the ping, such as the ping index

first_input.measurement.index

Refer to the complete list of the Measurement class attributes on the Using the Code operator online Help page.

https://support.echoview.com/WebHelp/How_To/Use_The_Code_Operator/Echoview_Python_Package/Measurement_class.htm

Echoview Tutorial: Introduction to the Code operator Page 36 of 74

11 Practice—Outputting messages to a log

You can output messages to a log file to facilitate checks on your Code operator programs. Log messages are
helpful to debug your program if it is not working, or not working as expected. In this practice, we will program
a Code operator to create a log and output messages to it.

We will utilize our Code operator to determine how the window of measurements (Section 9.1) behaves at the
edges of an echogram, where there may not be an equal number of pings flanking the matched ping.

If you do not understand the Python commands in the upcoming steps, we will examine them in Section
11.1.1. Then, in Section 11.2 we will interpret the log.

You can find the completed Echoview Python source file commands for this practice in Appendix A.4.

11.1 Logging the number of pings in the window of measurements

1. To begin, open Echoview, create a new EV file, and with the Fileset window add

C:\Echoview Software\Tutorials\IntroToCodeOperator\Simulated-

data\example.sv.csv

Echoview creates the raw variable

Fileset 1: Sv comma-separated values

Find this raw variable on the Dataflow window and rename it to

Fileset 1: Sv CSV ➔

2. Take a glance at the data.

Double-click on the raw variable to open its echogram, set the Color legend Display minimum to −2 and

Display range to 5 (Figure 1), and adjust the zoom until you display all the data in the echogram (Figure

2).

3. Press Ctrl+S and Echoview will open a Windows dialog box to save the new EV file.

a. With the Windows dialog box first create a new folder called

code-operator-window-edges

click into it and enter the file name

window-edges

b. When you click Save Echoview appends the required .EV extension. Remember to keep saving

your progress.

4. Create a Code operator virtual variable (Section 1.2)

a. Rename the new Code operator variable to

Code: Window ➔

b. Navigate to the Code page (Figure 5) and click on to generate a new Echoview

Python source file.

c. In the Windows dialog box that pops up, navigate into

Echoview Tutorial: Introduction to the Code operator Page 37 of 74

code-operator-window-edges

and save the Echoview Python source file as

window-edges

Echoview will automatically append the required .py extension to the file name and open window-

edges.py in Windows Notepad (by default). Set this aside for now.

d. Still on the Code page

i. confirm that you see the path to window-edges.py in the Python source file text box

(Figure 5), and

ii. enter 5 for Window size (pings)

e. Finally, click on the Operands page (Figure 6) and verify that Operand 1 for the Operands
section shows

Fileset 1: Sv CSV

5. Click OK to save your changes and close the Variable Properties dialog box. Also save your changes to

window-edges.EV.

Your Dataflow window should resemble Figure 13 .

Figure 13. Dataflow window with Code operator.

6. Return to window-edges.py, where we will now create a program to output debug messages from

 to tell us what the window is doing.

While editing window-edges.py, ensure you maintain the indentation level, and that you use tabs or

spaces—in a consistent way—to indent (Section 2.1.2).

a. Look for

def eval(self, inputs: List[ev.OperandInput]):

and immediately above it insert the following code block, while replacing the path in the example
with a path to a location on your PC instead.

Make sure that the Code operator can write to the location (e.g., on your Desktop or Documents
folder). Also, take note of the double backslash in the syntax to separate directory names.

def __init__(self):

Echoview Tutorial: Introduction to the Code operator Page 38 of 74

self.logfile = "C:\\path_to\\code-operator-window-edges\\window-edges.log"

The code snippet should now look like

. . .

. . .

def __init__(self):

self.logfile = "C:\\path_to\\code-operator-window-edges\\window-edges.log"

def eval(self, inputs: List[ev.OperandInput]):

"""Returns a numpy array representing the output ping’s samples.

. . .

. . .

b. Next, look for the return statement and immediately above it insert

current_window_length = len(first_input.window_measurements) with

open(self.logfile, a) as log:

log.writelines(

f"Matched ping: {first_input.measurement.index}\n "

f"Current window length: {current_window_length}/{self.window_size}\n

" f"Pings in window:\n ")

for ping in first_input.window_measurements: log.writelines(f"\t Ping

{ping.index}\n ")

log.writelines(f"\n ")

7. Save your changes to window-edges.py (UTF-8 encoding) then in Echoview double- click on

 to execute your program.

If you see a completely black echogram, or errors appearing in Echoview’s Message dialog box, review
your commands in window-edges.py against the completed Echoview Python source file in Appendix

A.4. Also ensure you have not mixed tabs and spaces while indenting, and that the file is in the UTF-8
character encoding system.

Otherwise, note that if you save any further changes to window-edges.py, Echoview will execute the

commands again, causing additional messages to appear in the log.

11.1.1 Explaining the Python commands

Firstly, we created the attribute

self.logfile = "C:\\path_to\\code-operator-window-edges\\window-edges.log"

which is a Python str (string) specifying the path to our log file for .

As iterates through the pings in the echogram of Operand 1, we utilize Python’s built-in len (length)

function to find the number of pings in the window for a given matched ping. We assign the result to

current_window_length.

Echoview Tutorial: Introduction to the Code operator Page 39 of 74

current_window_length = len(first_input.window_measurements)

Next, the with statement

with open(self.logfile, ‘a’) as log:

opens self.logfile and assigns it to the variable name log. The ‘a’ argument opens self.logfile in

append mode (so that existing logs are not overwritten).

The object we call log, created by the with statement, has a writelines() method. Any string we

provide as the first argument to writelines() (e.g., log.writelines("Print this message.")) will be

written to self.logfile.

To create the log messages, we employ Python’s print formatting feature. We compose our messages within

the f"..." commands. For example

f"Current window length: {current_window_length}/{self.window_size}\n "

Print formatting replaces the variable within the {} brackets with its value.

So current_window_length evaluates to the number of pings in the window of measurements for the current

matched ping.

And self.window_size evaluates to the value of Window size (pings). Refer to Appendix B.2.2 for more

details on self.window_size including the syntax of the Python code.

\n moves the cursor to a new line in the log file.

Now refer to the for loop

for ping in first_input.window_measurements:

iterates through the pings in the window of measurements (Section 9.2), assigning each ping in

first_input.window_measurements to the variable ping.

Within the for loop code block

log.writelines(f"\t Ping {ping.index}\n ")

evaluates the ping index of ping. The \t command inserts a tab in the log file, which helps with readability.

Finally, as the Code operator iterates through the pings of the echogram, we advance to the next line in the log
file for each ping with

log.writelines(f"\n ")

11.2 Interpreting the log

Open the window-edges.log file in the destination you specified, and scanning from the top you should see

Matched ping: 0

Current window length: 3/5

Pings in window:

Ping 0

Ping 1

Ping 2

Echoview Tutorial: Introduction to the Code operator Page 40 of 74

Matched ping: 1

Current window length: 4/5 Pings in window:

Ping 0

Ping 1

Ping 2

Ping 3

. . .

. . .

. . .

The log informs us that—for the matched pings at the start and end of the echogram—the window contains
fewer pings than the value you specify in Window size (pings).

The following schematic illustrates the results from the log. Each row of boxes represents the pings from
Operand 1 in the vicinity of the matched ping (e.g., 2). However, only the yellow pings are currently
processed in the Code operator via the window. The window— symbolized by the square brackets—moves with
each iteration to a new matched ping.

11.3 Afterword

You can certainly modify the commands in window-edges.py to output debugging messages for your own

Code operator programs.

However, it is generally not practical to output information for all pings or ping samples, as we did in Section
11.1. This is because real echograms typically contain a large amount of data, making such an approach
unmanageable.

If you do incorporate such debugging statements it is advisable to output only a subset of the data. (Refer to
Section 4.2.1 for an example that demonstrates how you can use array slicing to do this.)

Keep in mind that the Code operator does not always iterate through the pings in an echogram sequentially. As
a result, the log messages may not be in numerical ping index order.

You may also refer to the “Diagnosis Echoview Python source file” example on the online Help page, which
provides formalized Python logging paradigms.

https://support.echoview.com/WebHelp/How_To/Use_The_Code_Operator/Example_Echoview_Python_Source_Files/Diagnosis.htm

Echoview Tutorial: Introduction to the Code operator Page 41 of 74

12 Review

In the last few sections, we introduced the concept of the window of measurements (Section 9). This is an
aperture that allows the Code operator to read adjacent pings to the matched ping. The Window size (pings)
setting specifies the size of the window.

We learned that the pings in the window of measurements are objects of the Measurement class (Section 10),

meaning you can use the attributes of this class to access the data and metadata of the pings with the Code

operator.

We then utilized a Code operator to create a log file and output messages to it (Section 11). We used the log
to verify that the matched ping is always at the center of the window of measurements, except at the
edges. At the edges, there are an insufficient number of pings flanking the matched ping, causing the window
of measurements to truncate. You can adopt this program as a template to create log messages for your own
Code operator programs.

If you have finished experimenting with the window-edges.EV and window-edges.py files for now, you

can set them aside. However, these files will be revisited in the next section, where we will take a closer look
at the NumPy arrays of ping samples in the Code operator in preparation for the exercise

Echoview Tutorial: Introduction to the Code operator Page 42 of 74

13 Comments on ping samples in NumPy arrays

13.1 Outputting other ping attributes

In the last practice (Section 11), we used a for statement to loop through all the pings in the window and

obtained their ping index

for ping in first_input.window_measurements:

log.writelines(f"\t Ping {ping.index}\n ")

What about their sample data? Since this is a very small dataset, you can replace ping.index

with ping.data in window-edges.py and see the result in window-edges.log.

Try it now and compare the values in window-edges.log to the echogram (Figure 2).

You may also wish to try outputting the other attributes of a ping to window-edges.log, to discover all the

properties of a ping available to you via the Code operator. You can obtain the list of attributes from the Using
the Code operator online Help page.

13.2 Ping sample data from all pings in the window of measurement

Instead of outputting the sample data for the pings in the window of measurements, here is a technique for

collating them into a Python list, which you can then process.

(There is no need to implement this example in window-edges.py, you will use this technique in the

upcoming exercises.)

Still considering from the last practice (Section 11), if Window size (pings) = 7, and the current ping is

 4 then we have

first_input.window_measurements =

We can accumulate all the ping samples in the window into a list called ping_samples_db with

ping_samples_db = [ping.data for ping in first_input.window_measurements]

which uses Python’s list comprehension feature to create

ping_samples_db = [[1, 2, 1, 2, 1],

[2, 1, 2, 1, 2],

[1, 2, 1, 2, 1],

[2, 1, 2, 1, 2],

[1, 2, 1, 2, 1],

[2, 1, 2, 1, 2],

[1, 2, 1, 2, 1]]

If you are unclear about this output, identify ping 4 (the matched ping) and the adjacent pings in the window
of measurements in Figure 2. Then compare the values for the ping samples reported in the Color legend to

the numbers in ping_samples_db.

Manipulating such arrays is critical for harnessing the Code operator.

You also need to know how to identify the matched ping in such arrays. Use

[] 7 1 2

3

4 5 6

https://support.echoview.com/WebHelp/How_To/Use_The_Code_Operator/Echoview_Python_Package/Measurement_class.htm
https://support.echoview.com/WebHelp/How_To/Use_The_Code_Operator/Echoview_Python_Package/Measurement_class.htm

Echoview Tutorial: Introduction to the Code operator Page 43 of 74

return ping_samples_db[first_input.measurement_index]

to select the matched ping in ping_samples_db and return it via eval.

13.3 The shape of an array

We can use NumPy’s shape method to determine how many ping samples are in an array. For single beam

echosounders the array of ping samples has shape (range), e.g.,

first_input.measurement.data = [1, 2, 1, 2, 1]

Since the elements correspond to data values as a function of range, it is a one-dimensional array.

np.shape(first_input.measurement.data)

will return (5,)—a Python tuple.

With ping_samples_db at the end of Section 13.1, we created an array with shape (pings, range). Then

np.shape(ping_samples_db)

returns (7, 5), a two-dimensional array.

You can then utilize Python’s indexing to extract the number of elements from this tuple. To obtain the number

of pings, use

np.shape(ping_samples_db)[0]

and to determine the number of ping samples use

np.shape(ping_samples_db)[1]

The axis parameter in many NumPy functions offers a convenient way to select the particular dimension in such

arrays. For example, to compute the average of the samples along the ping axis use

np.mean(ping_samples_db, axis=0) =

[1.42857143, 1.57142857, 1.42857143, 1.57142857, 1.42857143]

To compute the average along the range axis use

np.mean(ping_samples_db, axis=1) = [1.4, 1.6, 1.4, 1.6, 1.4, 1.6, 1.4]

Try to answer the question: given ping_samples_db at the end of Section 13.1, which of these averages can you

return to Echoview with eval without triggering an error? We will see the solution at the end of Exercise 1a—

Mean operator.

Echoview Tutorial: Introduction to the Code operator Page 44 of 74

Part III: Exercises

14 Prelude to the exercises

These exercises are designed to give you some experience in thinking through an algorithm and implementing it
in the Code operator. Depending on your familiarity with Python, the Code operator and programming in
general, we recommend you set aside at least an hour or more to complete them. We also recommend that
you attempt the exercises in order as they increase in complexity down the list.

14.1 Obtaining the exercises

Navigate into the Exercises folder that you downloaded with this tutorial, by default

C:\Echoview Software\Tutorials\IntroToCodeOperator

Inside you will find the following sub-folders

1a-Mean-operator

1b-Mean-operator

2-Gaussian-blur-operator (challenging)

3-Multibeam-circle-filter (challenging)

Each of these contains some echosounder data, an Echoview Python source file template (-exercise.py)

and the Echoview (.EV) file for the exercise. You will also find the solution Echoview Python source file (-

solution.py) for each exercise.

14.2 Completing the exercises

To complete the exercises, open any of the -exercise.py Echoview Python source file templates. These

contain ’’’triple single-quoted’’’ text which provide hints to the solution Python code. Replace all ’’’triple

single-quoted’’’ text and quotes with your Python code before loading the -exercise.py into the Code

operator. If you get stuck, you can find the answer in the corresponding -solution.py file.

Tabs vs spaces

The Echoview Python source files you have encountered so far utilize tabs for Python code block indentation
(by default). Note that we use spaces instead for all the Echoview Python source files in the exercises.

14.3 Using the NumPy and SciPy packages

These widely used Python packages come preinstalled with Echoview, and we recommend you utilize the
numerous built-in functions they provide for operations. You can find the documentation for them at

https://numpy.org/doc/stable/search.html

https://scipy.github.io/devdocs/search.html

As a task, we recommend you visit NumPy’s site and search for “numpy.mean” to read and understand the
documentation about the averaging function we used just now in Section 13.3.

14.4 Programming principles

https://numpy.org/doc/stable/search.html
https://scipy.github.io/devdocs/search.html

Echoview Tutorial: Introduction to the Code operator Page 45 of 74

While guiding you through these exercises, we have attempted to adhere to generally accepted programming
principles. There will be alternative solutions that are ostensibly more straightforward and suitable, and you are
encouraged to experiment with them as well.

Echoview Tutorial: Introduction to the Code operator Page 46 of 74

15 Exercise 1a—Mean operator

In the first exercise, we will use the window of measurements (Section 9) to implement Echoview’s XxY
statistic operator’s mean algorithm. After that, in Section 15.5.2, we will also conduct a test to verify our
program.

The Echoview files and Python source files for this exercise are in the 1a-Mean-operator folder.

15.1 Algorithm

This program computes the mean (𝑥) of the sample data in the ping dimension for the number of pings specified in

Window size (pings) according to

�̅� =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

(1)

Here, 𝑥𝑖 are the ping sample values in linear units, and 𝑛 is the number of ping samples.

15.2 Setting up the Code operator

1. Open Mean of pings 1a.EV in Echoview and in the Dataflow window locate . This is a Code

operator variable.

2. Right-click on this and select Variable Properties from the drop-down menu (or left-click and press F8) to
open the Variable Properties dialog box.

a. Navigate to the Operands page (Figure 10) and in the Operands section select

as Operand 1.

Fileset 1: Sv pings

b. Click on the Code page (Figure 5) then

i. specify the path to mean-operator-exercise.py in the Echoview Python

source file text box, and

ii. set Window size (pings) to 5

Click OK to save these settings and close the Variable Properties dialog box.

15.3 Setting up the Echoview Python source file

To complete this exercise, code the following procedure into the eval method in mean-

operator-exercise.py. You need to replace any triple single-quoted text (e.g., ’’’Ping samples’’’) with

your answer.

Echoview Tutorial: Introduction to the Code operator Page 47 of 74

15.3.1 Procedure

1. In eval assign the input from Operand 1 to the variable

first_input

2. Next, we will use Python’s list comprehension feature (refer to the example in Section 13.2) to create a

list and populate it with the ping samples from the pings within the window.

Assign this list to the variable

ping_samples_db

3. We will be averaging the ping samples in the linear domain according to the formula

10
𝑥

10⁄

where 𝑋 is the ping samples in dB units. Utilize NumPy’s power and divide functions to implement

this formula (attempt the computation in a single line of code) and assign the result to

ping_samples_linear

4. Now compute the mean of the ping samples (Equation 1) and assign the result to

mean_linear

5. Convert the averaged result back to units of dB according to

10 log10 𝑋

where 𝑋 is the ping samples in linear units. Utilize NumPy’s log10 and multiply functions to

implement this formula (again, attempt the computation in a single line of code) and assign the result to

mean_db

6. Lastly, use the return statement to communicate mean_db to Echoview.

You can verify your answers against mean-operator-solution.py.

15.4 Executing the Echoview Python source file

Back in Echoview, double-click on to execute mean-operator-exercise.py and open the

echogram.

Compare the result with the echogram for shown in Figure 14 and see that the data samples are

smeared in the ping dimension.

Echoview Tutorial: Introduction to the Code operator Page 48 of 74

Figure 14. Echograms for the Code operator (top) and (bottom).

15.5 Comparing the result with the XxY statistic operator

We will now use a Minus operator to test against Echoview’s XxY statistic operator.

15.5.1 Creating an XxY statistic operator to replicate the Code operator

1. In Echoview create a XxY Statistic operator and rename it to .

2. On the Variable Properties dialog box

a. click onto the Operands page, and under the Operands section for Operand 1 choose

Fileset 1: Sv pings

 from the drop-down menu.

b. click onto the XxY Statistic page and under the Settings section and set

i. Statistic to Mean

ii. Rows (samples) to 1

iii. Columns (pings) to 5 (identical to the value in step 2(b.)ii in Section 15.2.)

Click OK to save the changes and close the dialog box. Your Dataflow window should resemble Figure 15.

https://support.echoview.com/WebHelp/Files%2C_Filesets_And_Variables/Variables/Virtual_Variables/Operators.htm#Minus_operator1
https://support.echoview.com/WebHelp/Windows_And_Dialog_Boxes/Dialog_Boxes/Variable_Properties_Dialog_Box/Operator_Pages/XxY_Statistic.htm

Echoview Tutorial: Introduction to the Code operator Page 49 of 74

Figure 15. Dataflow window showing the XxY statistic operator.

Double-click on to open the echogram and compare it to the echogram for . They

will be identical.

15.5.2 Creating a Minus operator to test the difference

We will use the Minus operator to compare and .

3. Create a Minus operator and rename it to .

4. On the Variable Properties dialog box click onto the Operands page, and under the Operands section

for Operand 1 choose

Exercise 1a - Mean of pings

from the drop-down menu for Operand 1, and

XxY statistic - Mean of pings

from the drop-down menu for Operand 2.

5. Click OK to save the changes and close the dialog box. Your Dataflow window should resemble Figure
16.

Echoview Tutorial: Introduction to the Code operator Page 50 of 74

Figure 16. Dataflow window showing the Minus operator.

15.5.3 Visualizing the difference between the XxY statistic and Code operator

On the Dataflow window, double-click on to view its echogram. Set Display minimum to −0.001 dB

and Display range to 0.002 dB on the Color legend to reveal any minute deviations.

The echogram for will resemble Figure 17—a uniform color indicating no difference between

 and .

Echoview Tutorial: Introduction to the Code operator Page 51 of 74

Figure 17. Echogram showing no differences in the ping samples between and .

15.6 Afterword

You can now close the .EV and .py files for this exercise.

In the next exercise, we will add as Operand 2 to a Code operator variable. We will then extend

the program from this exercise to perform the subtraction in Section 15.5.

Echoview Tutorial: Introduction to the Code operator Page 52 of 74

16 Exercise 1b—Mean operator

This exercise is based on the previous one. However, we will verify that our Code operator algorithm is
identical to the one in the XxY Statistic operator with the Code operator itself, instead of the Minus operator.

The Echoview files and Python source files for this exercise are in the 1b-Mean-operator folder.

16.1 Algorithm

Subtract the samples from the output of the Code operator Echoview variable, and test

if the difference is less than a threshold of 10-10 dB. Then return the Boolean value True if so and False
otherwise.

16.2 Setting up the Code operator

1. Open Mean of pings 1b.EV in Echoview and in the Dataflow window locate . This is a

Code operator variable.

2. Right-click on this and select Variable Properties from the drop-down menu (or left-click and press F8) to
open the Variable Properties dialog box.

a. Navigate to the Operands page (Figure 10) and in the Operands section

i. click on the button, and

Figure 18. with Fileset 1: Sv pings as Operand 1 and XxY statistic - Mean of pings

as Operand 2.

Echoview Tutorial: Introduction to the Code operator Page 53 of 74

ii. from the drop-down menu, choose

XxY statistic - Mean of pings

as Operand 2 (Figure 18). Or choose XxY statistic then, right-click on this variable,

select the Name ad Notes page on the Variable Properties dialog box, check Dynamic,

and rename to XxY statistic - Mean of pings in the Dynamic name box.

Your Dataflow window should now resemble Figure 19.

Figure 19. Dataflow window for Exercise 1b – Mean of pings.

b. Navigate to the Code page (Figure 5) then

i. Specify the path to mean-algorithm-comparison-exercise.py

in the Echoview Python source file text box, and

ii. set Window size (pings) to 5

Click OK to save these settings and close the Variable Properties dialog box.

16.3 Setting up the XxY statistic operator

In the Dataflow window (Figure 19) locate . Open its Variable Properties dialog box and follow the

procedure from step 2 in Section 15.5.1 to set it up.

16.4 Setting up the Echoview Python source file

To complete this exercise, code the following procedure into the Operator class in

mean-algorithm-comparison-exercise.py. You need to replace any triple single-quoted text

(e.g., ‘’’Ping samples’’’) with your answer.

Procedure

1. Firstly, program the threshold as an attribute of Operator. Use the __init__ method21 and create an

attribute called

self.threshold

21 We first encountered the __init__ method in Section 11.

Echoview Tutorial: Introduction to the Code operator Page 54 of 74

Assign the value 10-10 (i.e., the threshold value in dB) to it.

Now search in the eval method for the line of code

mean_db = np.multiply(np.log10(mean_linear), 10)

and continue with the following steps.

(We are proceeding from the point corresponding to step 5 from Section 15.3.)

2. Obtain the ping sample data for and assign the result to

xxy_statistic_samples

3. Next use NumPy’s subtract method to perform the element-wise subtraction between

mean_db and xxy_statistic_samples and assign the result to

difference

4. Then call NumPy’s where method22 to test when the magnitude of the elements in

difference are less than self.threshold.

return the Boolean values True if so and False otherwise.

5. Finally, define the result_type method for the Operator class and choose the appropriate

data type attribute from the MeasurementType class (Appendix C.4) to return to Echoview.

You may verify your answers against mean-algorithm-comparison-solution.py.

16.5 Executing the Echoview Python source file

When you save your changes in mean-algorithm-comparison-exercise.py the color of the

Code operator variable will change to in the Dataflow window to indicate a Boolean Echoview

variable.

Double-click on it to open its echogram. You will see that all samples are True (Figure 20),

demonstrating the means, calculated using and differ by less than our threshold of 10-10

dB.

22 This works like a combination of a for loop combined with an if statement. If you are unsure how it works

refer to the documentation on the NumPy’s website or to the examples in Appendix D.

Echoview Tutorial: Introduction to the Code operator Page 55 of 74

Figure 20: The Echogram populated with True for every sample demonstrates the means, calculated using

and , differ by less than our threshold of 10-10
 dB.

Echoview Tutorial: Introduction to the Code operator Page 56 of 74

17 Exercise 2—Gaussian blur operator

In this exercise, you will implement a generalized version of Echoview’s XxY convolution operator’s
Gaussian blur algorithm. You can use this program to fine-tune the Gaussian function used for
computing the convolution kernel weights.

A key takeaway from this exercise is that you can replace the Gaussian (Equation 3) with any
function to use as a filter for your ping data.

The Echoview files and Python source files for this exercise are in the

2-Gaussian-blur-operator folder.

17.1 Algorithm

This program convolves ping samples in the Code operator’s window of measurements (Section 9) with

a kernel (e.g., the 3×3 kernel in Figure 21) according to

𝑓(𝑛1 , 𝑛2) ∗∗ 𝑔(𝑛1 , 𝑛2) = ∑ ∑ 𝑔(𝑘1, 𝑘2

∞
𝑘2=−∞

∞
𝑘1=−∞

) 𝑓(𝑛1 − 𝑘1 , 𝑛2 − 𝑘2) (2)

Here, 𝑓 (𝑛1, 𝑛2) is the input echogram and 𝑔(𝑛1, 𝑛2) is the convolution kernel, where (𝑛1, 𝑛2)

represents the ping samples’ coordinates and (𝑘1, 𝑘2) represents the kernel coordinates. The kernel

values themselves we compute using the normalized23 2 D Gaussian equation

(𝑘1, 𝑘2) =
1

2𝜋𝜎𝑥𝜎𝑦
𝑒

−[
(𝑘1−𝜇𝑥)2

2𝜎𝑥
2 +

(𝑘2−𝜇𝑦)
2

2𝜎𝑦
2]

 (3)

We will define what the variables in Equations (2) and (3) represent in step 2 in Section 17.3.

17.2 Setting up the Code operator

1. Open Gaussian blur operator.EV in Echoview and in the Dataflow window locate

 . This is a Code operator variable.

2. Right-click on this and select Variable Properties from the drop-down menu (or left-click and
press F8) to open the Variable Properties dialog box.

a. Navigate to the Operands page (Figure 10) and in the Operands section select

Fileset 1: Sv ping

as Operand 1.

b. Click on the Code page (Figure 5) then

i. specify the path to gaussian-blur-operator-exercise.py in the Echoview Python

source file text box, and

ii. set Window size (pings) to 5

23 Normalization preserves the magnitude of the output from the convolution vis-à-vis the input. Here,

1

2𝜋𝜎𝑥𝜎𝑦
 accounts for this. However, note that this factor (obtained by integrating the 2 D Gaussian) assumes a

continuous function. Since our kernel is discrete, there will be an error in the normalization. The magnitude of this

error is inversely proportional to the kernel size.

Echoview Tutorial: Introduction to the Code operator Page 57 of 74

Generally, this value should be greater than or equal to the value assigned to 𝑘1 in

Equation 2 to ensure that the kernel is not wider than the number of pings in the window.

Click OK to save these settings and close the Variable Properties dialog box.

17.3 Setting up the Echoview Python source file

To complete this exercise, code the following procedure into the Operator class in gaussian-blur-

operator-exercise.py. You will need to replace any triple single-quoted text (e.g., ’’’Ping samples’’’)

with your answer.

You will be implementing the Python commands according to the following stages.

1. Groundwork

2. Set up the kernel grid

3. Compute the Gaussian weights for the kernel

4. Perform the convolution

Groundwork

1. To perform the convolution in Equation 2, we will use the convolve2d function. We have imported it for

you with the

from scipy.signal import convolve2d

statement near the top of the file.

2. In Operator use __init__ to define the kernel dimensions that constrain 𝑘1 and 𝑘2 in Equation 2, and

to fix 𝜇𝑥, 𝜇𝑦, 𝜎𝑥 and 𝜎𝑦 for the 2 D Gaussian in Equation 3. Use these variable names in gaussian-
blur-operator-exercise.py

𝑘1 kernel_column_span

𝑘2 kernel_row_span

𝜇𝑥 offset_x

𝜇𝑦 offset_y

𝜎𝑥 standard_deviation_x

𝜎𝑦 standard_deviation_y

3. In eval start by compiling a list of ping samples in linear units (follow steps 1—3 from Section 15.3) in

the window and assign it to

ping_samples_linear

Set up the kernel grid

4. The grid for the kernel is a Python function. Outside of Operator and after eval create a function

called

kernel_coordinates

that accepts two parameters specifying the kernel’s dimensions

kernel_column_span

kernel_row_span

kernel_coordinates will correspond to 𝑘1 and 𝑘2 in Equation 2.

To illustrate what we want to achieve, take the example when kernel_row_span =

kernel_column_span = 3 as shown in Figure 21.

Echoview Tutorial: Introduction to the Code operator Page 58 of 74

Figure 21. A schematic of a 3×3 convolution kernel. In general, the kernel can comprise as many (odd-numbered) rows
and columns as you want.

5. With kernel_column_span and kernel_row_span deduce the kernel’s x_limit and y_limit

relative to the center at (0, 0)24 marked with ×

6. Given the kernel limits, use NumPy’s linspace to generate each axis assigning the output to

kernel_x_coords and kernel_y_coords

7. return the coordinate pairs via NumPy’s meshgrid which computes the coordinate pairs for the x and y

axes.

(Since the kernel is essentially an array of coordinates, this is not the only way of constructing it. There
are numerous ways of generating arrays to achieve the same result).

Compute the Gaussian weights for the kernel

24 Setting up the kernel relative to these coordinates ensures the 2 D Gaussian will yield

weights that are symmetric about the origin.

Echoview Tutorial: Introduction to the Code operator Page 59 of 74

8. We will use another Python function to implement Equation 3, to compute the weights for the kernel.

Outside of Operator create a function called

normalized_gaussian_kernel

that accepts all the parameters from __init__ (step 2)

9. Now program

normalized_gaussian_kernel

to call

kernel_coordinates (step 4)

and utilize Python’s multiple assignment feature to assign the output to x_coords and

y_coords.

10. Then return the 2 D Gaussian described by Equation 3.

In this return statement, x_coords and y_coords from the previous step, and the parameters from

__init__ substitute into 𝑥, 𝑦, 𝜇𝑥, 𝜇𝑦, 𝜎𝑥 and 𝜎𝑦 in Equation 3.

Perform the convolution

11. Back in eval call normalized_gaussian_kernel using the attributes in __init__ as the parameters.

Assign the result to

kernel

12. Now perform the convolution by passing ping_samples_linear and kernel into convolve2d
(which we imported in step 1). Assign the result to

convolution_linear

13. Convert the result back to units of dB (refer to step 5 in Section 15.3). Assign this result to

convolution_db

14. Lastly, use the return statement to communicate the matched ping in convolution_db to Echoview

(refer to Section 13 for the example syntax).

You may verify your answers against gaussian-blur-operator-solution.py.

17.4 Executing the Echoview Python source file

Back in Echoview double-click on to execute the Echoview Python source file gaussian-

blur-operator-exercise.py and open the echogram.

Echoview Tutorial: Introduction to the Code operator Page 60 of 74

18 Exercise 3—Multibeam circle filter

In this exercise, you will form a circular mask on a multibeam echogram and set the ping samples within that
mask to no data25.

Since Echoview does not currently support regions for multibeam data, this exercise demonstrates how you
can utilize the Code operator to exploit certain features available to regions in your multibeam analysis.

The Echoview files and Python source files for this exercise are in the 3-Multibeam-circle-filter
folder.

18.1 Algorithm

Refer to Figure 22. Using a polar coordinate system, choose the center of the circular mask to be a point (𝑟0, 𝜑)

in the multibeam fan given by the position vector
→
𝑟0

 . The center of each sample in the ping has coordinates (𝑟𝑖,

𝜃𝑖), given by the position vector
→
𝑟𝑖

 . For a circular mask of radius 𝑅, if |
→
𝑟0

−
→
𝑟𝑖

| < 𝑅, set ping sample
→
𝑟𝑖

 to no data.

Figure 22. This by (𝑟𝑖, 𝜃𝑖)
according to describes a
multi- beam fan comprising
9 beams, with 9 samples
per beam. We want a
circular mask with center at
(𝑟0, 𝜑) and radius 𝑅. Our
algorithm will test the
vector to the center of

each sample
→
𝑟𝑖

 given |
→
𝑟0

−
→
𝑟𝑖

|, i.e., the magnitude of

the red vector. If the
result is less than R, set

sample
→
𝑟𝑖

 to no data.

25 Refer to the About no data online Help page.

https://support.echoview.com/WebHelp/Using_Echoview/Echogram/About_no_data.htm

Echoview Tutorial: Introduction to the Code operator Page 61 of 74

18.2 Setting up the Code operator

1. Open Multibeam circle filter.EV in Echoview and in the Dataflow window

locate . This is a Code operator variable.

2. Right-click on this and select Variable Properties from the drop-down menu (or left-click and

press F8) to open the Variable Properties dialog box.

a. Navigate to the Operands page (Figure 10) and in the Operands section select

as Operand 1.

Fileset 1: Sv frames

b. Click on the Code page (Figure 5) then

i. specify the path to multibeam-circle-filter-exercise.py in the

Echoview Python source file text box, and

ii. set Window size (pings) to 1

Click OK to save these settings and close the Variable Properties dialog box.

18.3 Setting up the Echoview Python source file

To complete this exercise, code the following procedure into the Operator class in multibeam-circle-filter-

exercise.py. You need to replace any triple single-quoted text (e.g., ‘’’Ping samples’’’) with your answer.

Groundwork

1. In Operator use __init__ (Appendix B.2.2) to specify the center (𝑟0, 𝜑) of the circular mask in the

multibeam fan and its radius 𝑅. Use these variable names in your Echoview Python source file

𝑟0 center_range

𝜑 center_angle

𝑅 radius

Determining the coordinates of each sample

To compute the coordinates (𝑟𝑖, 𝜃𝑖) of each sample in the ping we will

• firstly, subtract the start and stop ranges of the ping and divide it by the number of samples to get
the “thickness” of each sample to compute 𝑟𝑖, then

• use the beam angles provided by the Measurement class to obtain 𝜃𝑖.

2. In eval assign Operand 1 to

first_input

and the matched ping to

ping

Echoview Tutorial: Introduction to the Code operator Page 62 of 74

Since this is a multibeam ping, ping.data has shape (range, beams).

3. Use NumPy’s shape method to find the shape (Section 13.3) of the ping. This method

returns a tuple indicating the number of elements in each dimension. Assign the number

of samples in the range dimension to

sample_count

4. Assuming all the samples span an equal range, use
𝑆𝑡𝑎𝑟𝑡 𝑟𝑎𝑛𝑔𝑒−𝑆𝑡𝑜𝑝 𝑟𝑎𝑛𝑔𝑒

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 to compute the

’thickness’ of each sample.

Start range

Assign the value to

sample_thickness

Next, halve sample_thickness to get the distance to the center of a sample and assign it

to

half_thickness

5. Then use half_thickness to find the range to the center of the first sample and the

range to the center of the last sample.

To compute 𝑟𝑖 for the samples in between, insert these values into NumPy’s linspace

function along with sample_count from step 3. Assign this result to

range_values_1D

Number of samples

Sample thickness

Stop range

Echoview Tutorial: Introduction to the Code operator Page 63 of 74

We now have the 𝑟𝑖 values for all the samples in the ping.

6. Use the beam_angle attribute (refer to the Using the Code operator online Help page) to

obtain the angle at the center of each beam.

This is in degrees. Convert it using NumPy’s radians function (for the trigonometric

computations later on) and assign the result to

beam_angles_1D

7. Finally, use meshgrid with range_values_1D and beam_angles_1D to create a 2 D lattice

corresponding to (𝑟𝑖, 𝜃𝑖). Utilize Python’s multiple assignment feature to designate the

output to sample_ranges and sample_angles.

https://support.echoview.com/WebHelp/How_To/Use_The_Code_Operator/Using_the_Code_operator.htm#class_Measurement

Echoview Tutorial: Introduction to the Code operator Page 64 of 74

Each point represents the (𝑟𝑖, 𝜃𝑖) coordinates of the vector
→
𝑟𝑖

 (Figure 22).

Testing if the sample is within the circular mask

8. Compute |
→
𝑟0

−
→
𝑟𝑖

| which is the distance between the center of the circular mask (vector
→
𝑟0

and center of each ping sample (vector 𝑟 𝑖).

An easy way is to convert the coordinates of the vectors from polar (𝑟, 𝜃) to cartesian (𝑥,

𝑦) coordinates and subtract the 𝑥 and 𝑦 components:

(
→
𝑟0

−
→
𝑟𝑖

)
𝑥

= |𝑟0| cos 𝜑 − |𝑟𝑖| cos 𝜃𝑖

(
→
𝑟0

−
→
𝑟𝑖

)
𝑦

= |𝑟0| sin 𝜑 − |𝑟𝑖| sin 𝜃𝑖

Then

|
→
𝑟0

−
→
𝑟𝑖

| = √(
→
𝑟0

−
→
𝑟𝑖

)
𝑥

2

+ (
→
𝑟0

−
→
𝑟𝑖

)
𝑦

2

Assign the result to

distance_2D

9. Finally use NumPy’s where method (Appendix D) to return the result of the test |
→
𝑟0

−
→
𝑟𝑖

| < R.

a. If the condition is satisfied, set (𝑟𝑖, 𝜃𝑖) to NumPy’s nan—which is interpreted as no data in

Echoview.

b. If the condition is not satisfied, communicate the unfiltered ping sample to Echoview.

You may verify your answers against multibeam-circle-filter-solution.py.

18.4 Executing the Echoview Python source file

Echoview Tutorial: Introduction to the Code operator Page 65 of 74

Back in Echoview double-click on to execute the Echoview Python source file multibeam-

circle-filter-exercise.py and open the echogram. Navigate through the pings of the echogram to

see the mask of no data regions in all the pings as shown in Figure 23.

Figure 23

Echoview Tutorial: Introduction to the Code operator Page 66 of 74

Part IV: Appendix

A Complete Echoview Python source files

Here are the complete versions of the practice Echoview Python source file programs from this tutorial.

Fonts in green (such as def) are reserved keywords, meaning we cannot use them as variable names. self
(Appendix B.3) is an exception and is technically not a Python keyword, however, it is accepted as one in
practice.

A.1 About the commands in the default Echoview Python source file (Section 2.1.2)

1 from typing import List

2 import echoview as ev

3 import numpy as np

4

5 class Operator(ev.OperatorBase):

6

7 def eval(self, inputs: List[ev.OperandInput]):

8 first_input = inputs[0]

9 return first_input.measurement.data

A.2 Practice—Loading additional operands into the Code operator (Section 5)

1 from typing import List

2 import echoview as ev

3 import numpy as np

4

5 class Operator(ev.OperatorBase):

6

7 def result_type(self, input_types: List[ev.MeasurementType]):

8 return input_types[1]

9

10 def eval(self, inputs: List[ev.OperandInput]):

11 first_input = inputs[0]

12 second_input = inputs[1]

13 return second_input.measurement.data

Echoview Tutorial: Introduction to the Code operator Page 67 of 74

A.3 Practice—Working with ping samples from different operands (Section 7)

1 from typing import List

2 import echoview as ev

3 import numpy as np

4

5 class Operator(ev.OperatorBase):

6

7 def result_type(self, input_types: List[ev.MeasurementType]):

8 return ev.MeasurementType.SINGLE_BEAM_LINEAR

9

10 def eval(self, inputs: List[ev.OperandInput]):

11 first_input = inputs[0]

12 second_input = inputs[1]

13 targets_per_unit_volume_log = first_input.measurement.data - second_input.measurement.data

14 targets_per_unit_volume_linear = 10**(targets_per_unit_volume_log/10)

15 return targets_per_unit_volume_linear

A.4 Practice—Outputting messages to a log (Section 11)

1 from typing import List

2 import echoview as ev

3 import numpy as np

4

5 class Operator(ev.OperatorBase):

6

7 def __init__(self):

8 self.logfile = "C:\\path_to\\code-operator-window-edges\\window-edges.log"

9

10 def eval(self, inputs: List[ev.OperandInput]):

11 first_input = inputs[0]

12

13 current_window_length = len(first_input.window_measurements)

14 with open(self.logfile, a) as log:

15 log.writelines(

16 f"Matched ping: {first_input.measurement.index}\n "

17 f"Current window length: {current_window_length}/{self.window_size}\n "

18 f"Pings in window:\n ")

19 for ping in first_input.window_measurements:

20 log.writelines(f"\t Ping {ping.index}\n ")

21 log.writelines(f"\n ")

22 return first_input.measurement.data

Echoview Tutorial: Introduction to the Code operator Page 68 of 74

B The Code operator and object-oriented programming

The Code operator is developed according to a paradigm in computer science known as object-oriented
programming (OOP). In this section, we will introduce some OOP concepts as they apply to the Code
operator.

B.1 What is an “object”?

Refer to the default Echoview Python source file (Appendix A.1). The code from the class keyword up to the

colon informs you of the object type. This and the indented code aligned to it is a blueprint of the object. When
we instantiate26 it—in our case by creating a Code operator in Echoview—an instance of that blueprint
manifests, i.e.,

 ⇐⇒ class Operator(ev.OperatorBase):

The Python syntax

Operator(ev.OperatorBase)

means we are defining a class called Operator that inherits all its attributes and methods from

OperatorBase27.

B.2 Attributes and methods

Objects have two features called attributes and methods (next section). These characterize the state of the

object when it is instantiated and its behavior respectively. Both are defined within the class body.

B.2.1 Programming a method for the Code operator

You can program the eval and result_type methods (Appendix C.1.1 and C.1.2), which Echoview calls on

Operator.

In Python, you use the syntax for programming functions to create methods as well, for example,

class Operator(ev.OperatorBase):

def eval(self, inputs: List[ev.OperandInput]):

. . .

. . .

This defines the eval method for the Operator class.

The return keyword

If it is specified in the method, the return statement e.g.,

def result_type(self, input_types: List[ev.MeasurementType]):

return input_types[0]

communicates the value that follows the return keyword back to the caller code and terminates the method.

This statement is needed for both the eval and result_type methods.

26 The act of allocating computer memory to create an object.
27 OperatorBase is an abstract base class from the echoview package (Appendix C) which we

import at the beginning of the Echoview Python source file.

Echoview Tutorial: Introduction to the Code operator Page 69 of 74

B.2.2 Programming an attribute for the Code operator

You may define the __init__ method under the Operator class in your Echoview Python

source file to create customized attributes for your Code operator object.

def __init__(self):

Note that Operator only accepts the self (Appendix B.3) parameter in __init__. This

is because Echoview initializes the Code operator in a standardized way. Any custom
parameters will be unknown to Echoview.

The window_size attribute

Note that Echoview creates the window_size attribute (Section 9) you do not define it in

__init__ in the Operator class.

B.2.3 Calling an attribute or method

Python utilizes the dot notation to get or set an attribute or call a method on an object. For example,

refer to this code snippet defining the result_type method.

def result_type(self, input_types:

List[ev.OperandInput]): if

input_types[0].is_acoustic:

return

input_types[0] else:

return ev.MeasurementType.UNDEFINED

In the line if input_types[0].is_acoustic: is calling the is_acoustic method on

input_types[0]

input_types[0]

is an object of the MeasurementType class (Appendix C.4) and has a method called

is_acoustic

which returns a Boolean.

Similarly, in the line

return ev.MeasurementType.UNDEFINED

we use the dot notation to set the UNDEFINED attribute of the MeasurementType class. You need to

prefix attributes of the Operator class with self.

B.3 About self

In Python self refers to the object of the class the method is called upon. It is like a

placeholder that allows access to attributes and methods of the object.

This is a characteristic of how Python works, and you need to build self into Operator class to

comply with the Python syntax requirements.

In the context of the Echoview Python source file, there are three instances when you need to specify

self

• setting up either eval or result_type in the Operator class,

• utilizing the window_size attribute of Operator class, or

• programming and using any attribute in the Operator class.

Echoview Tutorial: Introduction to the Code operator Page 70 of 74

Note that self is not a Python keyword. You may designate another name for this parameter; however,

the canonical protocol is to use self.

Echoview Tutorial: Introduction to the Code operator Page 71 of 74

C The echoview Python package

It is necessary to import the echoview Python package in your Python source file for the Code operator to

work. The echoview package comes installed with Echoview.

Refer to the default Echoview Python source file (Appendix A.1). The statement

import echoview as ev

imports the echoview Python package and gives the Operator class access to the following classes.

• OperatorBase

• OperandInput

• Measurement

• MeasurementType

We will briefly describe these classes here. However, refer to the Using the Code operator online Help page
for more details about them.

C.1 OperatorBase

This is the parent for the Operator class, and Operator inherits the eval and result_type methods from

OperatorBase.

C.1.1 eval(self, inputs: List[ev.OperandInput])

This method reads in pings from all the input operands, executes your Python commands on the pings and

communicates the resultant ping samples to Echoview. It is necessary to declare the eval (abstract) method in

your Python source file.

This method requires the return statement. The value is a NumPy array of the same shape as inputs.

The eval method has two parameters:

1. self

When programming a method in Python, the first parameter fulfills a unique role. It governs which
object you want the method to act on (Appendix B.3).

2. inputs: List[ev.OperandInput]
28

This is a list of all the operands you specified on the Operands page of the Variable Properties dialog

box (Figure 5).

inputs[0] corresponds to Operand 1. inputs[𝑁 − 1] corresponds to Operand 𝑁. The operands

must have the same ping geometry.

Each operand in inputs is an object of the OperandInput class (Appendix C.2).

C.1.2 result_type(self, input_types: List[ev.MeasurementType])

This method sets the data type of the Code operator in Echoview.

Even if you do not declare it, Echoview automatically calls result_type (via OperatorBase) and sets the data

type of the Code operator to the same as Operand 1 (i.e., input_types[0]).

28 This is defined according to Python’s function annotation feature which serves to assist you by indicating

the parameter’s type. The text before the colon is the parameter’s name, and the text after the colon is the

parameter’s type—in this case a Python list. While coding, reference this parameter with its name.

https://support.echoview.com/WebHelp/How_To/Use_The_Code_Operator/Using_the_Code_operator.htm#Echoview_package

Echoview Tutorial: Introduction to the Code operator Page 72 of 74

You may change the data type to that of another Operand or to any other data type supported by the Code

operator with the attributes of the MeasurementType class (Appendix C.4).

This method requires the return statement. The value is a MeasurementType object.

The result_type method has two parameters:

1. self

Refer to the equivalent description in eval in Appendix C.1.1.

2. input_types: List[ev.MeasurementType]28

This is a list of all the data types of the operands you specified on the Operands page of the
Variable Properties dialog box (Figure 5).

input_types[0] corresponds to the data type of Operand 1. input_types[𝑁 − 1] corresponds

to the data type of Operand 𝑁.

Each data type in input_types is an object of the MeasurementType class (Appendix C.4).

C.2 OperandInput

Each operand on the Operand page of the Variable Properties dialog box in Echoview is an object of this class.

The inputs parameter in eval (Appendix C.1.1) is a list of objects from this class.

Refer to the Using the Code operator online Help page for more details on this class.

C.3 Measurement

Each object of this class represents a ping (in the window of measurements (Section 9)).

Refer to the Using the Code operator online Help page for more details on this class.

C.4 MeasurementType

Echoview organizes ping data into categories based on their types. For example, Boolean, angular, Sv or

TS. This mechanism is implemented in the Code operator via the MeasurementType class.

The input_types parameter in result_type (Appendix C.1.2) is a list of objects from this class.

Refer to the Using the Code operator online Help page for more details on this class.

https://support.echoview.com/WebHelp/How_To/Use_The_Code_Operator/Echoview_Python_Package/OperandInput_class.htm
https://support.echoview.com/WebHelp/How_To/Use_The_Code_Operator/Echoview_Python_Package/Measurement_class.htm
https://support.echoview.com/WebHelp/How_To/Use_The_Code_Operator/Using_the_Code_operator.htm#class_MeasurementType

Echoview Tutorial: Introduction to the Code operator Page 73 of 74

D Examples using numpy.where

The numpy.where method is a useful and versatile tool that combines the functionality of an if statement and a

for loop to iterate over NumPy arrays. Here is an overview to demonstrate how it works. For more details, refer

to the documentation on NumPy’s website (Section 14.2).

numpy.where(condition, x, y)

Parameters:

condition: A Python conditional statement.

If it is satisfied, yield x, otherwise, yield y.

x, y: The values to yield from the conditional statement.

The usual convention is to use the following statement to import NumPy

import numpy as np

Then, as an example, if we create a NumPy array

a = np.array([0.,1.,2.,3.,4.,5.,6.,7.,8.,9.])

with np.where we can filter elements in the array with a value greater than 5.

mask = np.where(a > 5, a, np.nan)

mask would be [nan nan nan nan nan nan 6. 7. 8. 9.], where nan stands for “not a number”.

An equivalent implementation using a for loop with an if statement would look like

mask = a

for i in

range(len(a)):

if i > 5:

mask[i] =

a[i] else:

mask[i] = np.nan

However, np.where works on multi-dimensional arrays as well.

If we instead create

a = np.array([[0.,1.,2.,3.,4.,5.,6.,7.,8.,9.],

[0.,1.,2.,3.,4.,5.,6.,7.,8.,9.],

[0.,1.,2.,3.,4.,5.,6.,7.,8.,9.],

 [0.,1.,2.,3.,4.,5.,6.,7.,8.,9.]])

Echoview Tutorial: Introduction to the Code operator Page 74 of 74

then np.where(a > 5, a, np.nan) would output

and np.where(a != 5, True, False) would output

[[nan nan nan nan nan nan 6. 7. 8. 9.]

[nan nan nan nan nan nan 6. 7. 8. 9.]

[nan nan nan nan nan nan 6. 7. 8. 9.]

[nan nan nan nan nan nan 6. 7. 8. 9.]]

[[True True True True False True True True True]

[True True True True True False True True True True]

[True True True True True False True True True]

[True True True True True False True True True True]]

	Overview
	Prerequisites
	Echoview modules

	Contacting Echoview
	Set up
	Troubleshooting
	Troubleshooting
	The files for a tutorial are typically located in C:\Echoview Software\Tutorials\. The file path may differ if you install the tutorials elsewhere on your system. If the files are not in this folder, use Windows Explorer to search for them. If they ar...
	If you receive a message saying that the version of Echoview you are running cannot read the file you have opened, you may be running an old version of Echoview. You can download the latest version of Echoview from www.echoview.com
	Part 1: Preamble
	Introduction to the Code operator
	Python installation information

	Downloading and extracting the tutorial package
	Code operator resources
	About the numbering system
	Prerequisite knowledge for advanced usage
	Python programming syntax

	Part II: The Code operator
	1 Getting started
	1.1 Launching Echoview and loading the data
	1.2 Creating a Code operator virtual variable in Echoview

	2 Configuring settings for the Code operator
	1
	2
	2.1 The Python source file setting
	2.1.1 Generating a default Echoview Python source file
	2.1.2 About the commands in the default Echoview Python source file

	2.2 The Window size (pings) setting

	3 Executing the default Echoview Python source file
	1.
	3
	3.1 Afterword: The Code operator as an Echoview variable

	4 Practice—Adding 1 dB
	4
	4.1 Reading, manipulating and returning pings with the eval method
	4.1.1 Explaining the Python commands

	4.2 Returning the NumPy array of ping samples to Echoview
	4.2.1 Explaining the Python commands

	4.3 Indentation and encoding errors
	4.3.1 Mixing tabs and spaces
	4.3.2 Invalid encoding

	5 Practice—Loading additional operands into the Code operator
	5
	5.1 Loading the data
	5.2 Adding operands in Echoview
	5.3 Adding operands in the Echoview Python source file
	5.4 Returning the ping samples from another operand

	6 Practice—Changing the data type of the Code operator
	6
	6.1 Changing the data type with the result_type method
	6.1.1 Explaining the Python commands

	7 Practice—Working with ping samples from different operands
	7
	7.1 Computing the number of targets per unit volume
	1.
	2.
	3.
	4.
	5.
	6.
	7.1.1 Explaining the Python commands

	7.2 Choosing a data type with the result_type method
	7.2.1 Explaining the Python commands

	8 Review
	9 Introducing the window of measurements
	8
	9
	9.1 Understanding the window of measurements in concept
	9.2 Utilizing the window of measurements
	9.3 Summarizing notes on the window of measurements

	10 The Measurement class
	11 Practice—Outputting messages to a log
	10
	11
	11.1 Logging the number of pings in the window of measurements
	11.1.1 Explaining the Python commands

	11.2 Interpreting the log
	11.3 Afterword

	12 Review
	13 Comments on ping samples in NumPy arrays
	12
	13
	13.1 Outputting other ping attributes
	13.2 Ping sample data from all pings in the window of measurement
	13.3 The shape of an array

	Part III: Exercises
	14 Prelude to the exercises
	14
	14.1 Obtaining the exercises
	14.2 Completing the exercises
	Tabs vs spaces

	14.3 Using the NumPy and SciPy packages
	14.4 Programming principles

	15 Exercise 1a—Mean operator
	15
	15.1 Algorithm
	15.2 Setting up the Code operator
	15.3 Setting up the Echoview Python source file
	15.3.1 Procedure

	15.4 Executing the Echoview Python source file
	15.5 Comparing the result with the XxY statistic operator
	15.5.1 Creating an XxY statistic operator to replicate the Code operator
	15.5.2 Creating a Minus operator to test the difference
	15.5.3 Visualizing the difference between the XxY statistic and Code operator

	15.6 Afterword

	16 Exercise 1b—Mean operator
	16
	16.1 Algorithm
	16.2 Setting up the Code operator
	16.3 Setting up the XxY statistic operator
	16.4 Setting up the Echoview Python source file
	16.5 Executing the Echoview Python source file

	17 Exercise 2—Gaussian blur operator
	17
	17.1 Algorithm
	17.2 Setting up the Code operator
	17.3 Setting up the Echoview Python source file
	Groundwork
	Set up the kernel grid
	Compute the Gaussian weights for the kernel
	Perform the convolution

	17.4 Executing the Echoview Python source file

	18 Exercise 3—Multibeam circle filter
	18
	18.1 Algorithm
	18.2 Setting up the Code operator
	18.3 Setting up the Echoview Python source file
	Groundwork
	Determining the coordinates of each sample
	Testing if the sample is within the circular mask

	18.4 Executing the Echoview Python source file

	Part IV: Appendix
	A Complete Echoview Python source files
	A.1 About the commands in the default Echoview Python source file (Section 2.1.2)
	A.2 Practice—Loading additional operands into the Code operator (Section 5)
	A.3 Practice—Working with ping samples from different operands (Section 7)
	A.4 Practice—Outputting messages to a log (Section 11)

	B The Code operator and object-oriented programming
	A.1
	B.1 What is an “object”?
	B.2 Attributes and methods
	B.2.1 Programming a method for the Code operator
	The return keyword

	B.2.2 Programming an attribute for the Code operator
	Note that Operator only accepts the self (Appendix B.3) parameter in __init__. This is because Echoview initializes the Code operator in a standardized way. Any custom parameters will be unknown to Echoview.
	The window_size attribute

	B.2.3 Calling an attribute or method
	A.1

	B.3 About self

	C The echoview Python package
	C.1 OperatorBase
	C.1.1 eval(self, inputs: List[ev.OperandInput])
	C.1.2 result_type(self, input_types: List[ev.MeasurementType])

	C.2 OperandInput
	C.3 Measurement
	C.4 MeasurementType

	D Examples using numpy.where

